Mathematik-Wettbewerb 2004/2005 des Landes Hessen

3. RUNDE - LÖSUNGEN DER AUFGABENGRUPPE A

- 1. a) $6a a^2 = b \rightarrow a(6 a) = b \rightarrow 0 < a < 6$ (a|b) $\in \{(1|5), (2|8), (3|9), (4|8), (5|5)\}$
 - b) $\frac{a}{b+1} = a-4 \implies a > b \land a > 4 \implies$ $(a|b) \in \{(5|4), (6|2), (8|1)\}$
 - c) $\frac{a}{b} + \frac{2}{a} = 1 \implies b > a \land a > 2 \text{ und } b = \frac{a^2}{a 2} \implies$ (a|b) $\in \{(3|9), (4|8), (6|9)\}$
- 2. a) (1) Nachweis; $\triangle ADE = \beta = 90^{\circ} \alpha$, $\triangle EAD = \alpha$
 - (2) $\triangle DCB = 2\alpha$
 - (3) M Ist der Mittelpunkt der Strecke \overline{AC} ; Thaleskreis für ΔEAC und ΔAFC
 - (4) Begründung mittels Umfangswinkelsatz oder Betrachtung von Δ MFC $\Rightarrow \triangle$ FMC = 2α , Δ AEM $\Rightarrow \triangle$ AME = $180^{\circ} - 4\alpha \Rightarrow$ \triangle EMC = $4\alpha \Rightarrow \Delta$ MFC $\sim \Delta$ MEF $\Rightarrow |EF| = |FC|$
 - b) $\alpha = 30^{\circ}$
 - \triangle ACF = 2α (symmetrisches Trapez)
 - \triangle FED = α = 30°
 - $\triangle CDA = 180^{\circ} 2\alpha = \triangle EDF = 120^{\circ} \text{ oder } \triangle FEA = 180^{\circ} 2\alpha$
- 3. a) LSF 12
 - b) 15 Minuten
 - c) 16,7 %
 - d) (1) 95 %
 - (2) 2,63 %
- 4. a) Konstruktion des Dreiecks ABC;

Hinweise zur Konstruktion: Strecke AB und Thaleskreis über AB

b) Konstruktion des Trapezes ABCD;

Hinweise zur Konstruktion: Konstruktion des Teildreiecks ABD und Parallele zu AB, aus Umfangswinkelsatz folgt: △AMB = 100°

c) Konstruktion von P;

Hinweise zur Konstruktion: Dreieck ABC, Kreis über \overline{AB} mit $\triangle M'AB = 30^{\circ} = \triangle ABM'$ (M' liegt außerhalb des Dreiecks); Konstruktion eines solchen Kreises über einer weiteren Dreiecksseite; P als Schnittpunkt der beiden Kreisbögen. (Erklärung: Punkt M durch Spiegelung von M' an \overline{AB} , $\triangle AMB$ – nach Konstruktion 120° – ist nach dem Umfangswinkelsatz genauso groß wie $\triangle APB$.)

- 5. a) (1) 40,5 km
 - (2) Bernd fährt mit 36 km/h; er fährt 1,25 Stunden Alf benötigt 45 Minuten, d.h. 1 Stunde nach Jans Start.

Z.B.:
$$(x - \frac{1}{4}) \cdot 36 = x \cdot 27$$

b) (1) z.B.: 30 km und 14,5 km/h oder 15 km und 14 km/h

(2)
$$v = 15(s-1)$$
: s oder $v = \frac{15\frac{km}{h}(s-1 km)}{s}$

- 6. a) x = 9000
 - b) y = 1806
 - c) Nachweis; z,B.: S(1809) = 2008 und S(1810) = 2010
 - d) (1) S vergrößert sich um 11
 - (2) z.B.: S(1300) S(1000) = 333

(3)
$$D = 1 = S(1001) - S(1000) = 1112 - 1111$$

$$D = 2 = S(1010) - S(1009) = 1122 - 1120$$

$$D = 3 = S(1100) - S(1099) = 1222 - 1219$$

$$D = 4 = S(2000) - S(1999) = 2222 - 2218$$

- 7. a) 8 LE
 - b) auf 6 Wegen
 - c) $6 \cdot 4 = 24$ Möglichkeiten

(4 Möglichkeiten von B nach C)

- d) $4 \cdot 3 = 12$ Kreuzungen
- e) 48:4 = 12 (LE)

f)
$$13 + 12 + 11 + ... + 1 = (14 \cdot 13) : 2 = {14 \choose 2} = 91$$
 Möglichkeiten

Mathematik-Wettbewerb 2004/2005 des Landes Hessen

3. RUNDE - LÖSUNGEN DER AUFGABENGRUPPE B

1. Gib die Lösungsmenge in aufzählender Form an. G = Z.

a)
$$11x - (5 - 6x) = 6 \cdot (7x - 5)$$

 $17x - 5 = 42x - 30$
 $25 = 25x$
 $L = \{1\} \text{ oder } x = 1$
b) $(x + 6)^2 - (x - 5)^2 = 0$
 $x^2 + 12x + 36 - x^2 + 10x - 25 = 0$
 $22x + 11 = 0$
 $x = -0.5$
 $L = \{\}$
c) $6x^2 - 6 = (2x + 2) \cdot (3x - 3)$
 $6x^2 - 6 = 6x^2 - 6x + 6x - 6$
 $-6 = -6$
 $L = \mathbb{Z}$
d) $(4x + 2) \cdot (4x - 2) < 8x \cdot (2x - 5)$
 $16x^2 - 4 < 16x^2 - 40x$
 $0.1 > x$
 $L = \{0, -1, -2, -3, -4, ...\}$

e)
$$x^2 \cdot (x-9) > 0$$
 da $x^2 > 0 = x > 9$
 $L = \{10, 11, 12, 13, ...\}$

- 2. a) (1) 30 ct (2) 105 Minuten
 - b) Zeit 1 min 10 min **22 min 50** min Kosten bei QUICK **0.5** Cent 5 Cent 25 Cent 11 Cent Kosten bei FAST **9,2** Cent 11 Cent **13,4 Cent** 19 Cent
 - c) Ab der 31. Minute
 - d) 180 Minuten; z.B.: Lösung mittels Gleichung 0.5x = 2(0.2x + 9)
- 3. a) Koordinatensystem mit A, B, C und D(-4 | 1)

$$A = 24 \text{ cm}^2$$

$$A = 24 \text{ cm}^2$$

$$A = 16 \text{ cm}^2$$

- d) G(-6|1)
- e) $H(2 \mid -1)$ und $K(0 \mid -1)$ sowie $H(6 \mid -2)$ und $K(-4 \mid -2)$

- 4. a) Konstruktion beider Dreiecke; Hinweise zur Konstruktion: c und Parallele im Abstand 4,5 cm,
 - Kreis um B mit r = 6.5 cm.
 - b) Konstruktion des Dreiecks; Hinweise zur Konstruktion: Seite a und Parallele im Abstand 2,5 cm, Thaleskreis über a.
 - c) Konstruktion des Dreiecks; Hinweise zur Konstruktion: Kreis mit r = 5 cm, A auf diesem Kreis um Kreis um A mit r = 8 cm oder Kreis um A mit r = 6,5 cm.
 - d) Konstruktion des Dreiecks; Hinweise zur Konstruktion: Parallele Geraden im Abstand $h_a = 4.3$ cm, Wahl von B (oder A) auf einer Geraden und Kreis um B mit r = c = 4.8 cm.
- 5. a) 5894 €; die Jahreszinsen betragen 504 €
 - b) 12 %; die Jahreszinsen betragen 108 €
 - c) 288 Tage; die Jahreszinsen betragen 100 €
 - d) Bei Modell (2) verzinst sich das Kapital am besten.
- 6. a) (1) Konstruktion des Dreiecks
 - (2) Maßstab: 1:300000
 - b) (1) Kennzeichnung des Umkreismittelpunktes
 - (2) Markieren des Gebietes (Kreislinie mit r = 3 cm gehört nicht zum Gebiet!)

Kreise um A, B, C mit r = 3 cm,

Kreise um A,B,C mit r = 5 cm,

(3) Markieren der möglichen Punkte auf der Mittelsenkrechten

Kreis um B mit r = 5 cm, Kreis um A mit r = 5 cm

`
าก
a_{j}

(1)	16	3	2	13
	5	10	11	8
	9	6	7	12
	4	15	14	1

(2	2)

()	5	-6	-5	8
	0	3	2	-3
	4	-1	-2	1
	-7	6	7	-4

$$ZS = 34 S = 136$$

$$ZS = 2 S = 8$$

- b) (1) Die Zahlen von 3 bis 18
 - (2) Die Zahlen von –10 bis 5
- c) (1) Summe 6; Gesamtsumme 18
 - (2) Summe 505; Gesamtsumme 5050

Mathematik-Wettbewerb 2004/2005 des Landes Hessen

3. RUNDE - LÖSUNGEN DER AUFGABENGRUPPE C

1. a) (1)
$$18x + 101 = 59 + 12x$$

 $6x = -42$
 $L = \{-7\}$
(2) $3x - 8 + 4x - 11 = 11x - 5 - 7x + 7$
 $7x - 19 = 4x + 2$
 $3x = 21$
 $L = \{7\}$
(3) $4(8 - 5x) - 15 = 2(x + 12) - 15x$
 $32 - 20x - 15 = 2x + 24 - 15x$
 $-7x = 7$
 $L = \{-1\}$

- b) 200 = x + x + 2 + x 9; \Rightarrow Thorsten: 69 kg, Marcel: 71 kg, Paul: 60 kg
- 2. a) (1) Konstruktion des Dreiecks ABC, Hinweise zur Konstruktion: Seite a oder b und Antragung von γ .
 - (2) $h_a \approx 5.9$ cm
 - (3) A $\approx 15,34 \text{ cm}^2$
 - b) $h_c = 9 \text{ cm}$; Hinweis: $54 \text{ cm}^2 = 0.5 \cdot 12 \text{ cm} \cdot h_c$
 - c) $A = 40 \text{ cm}^2$
- 3. a) Streifendiagramm: Pommes 4 cm, Spaghetti 2,5 cm, Hamburger 2 cm, Döner 1 cm und Salat 0,5 cm.
 - b) 40 Lehrer
 - c) (1) 974,40 €

30 % Rabatt entspricht 360 €.

16 % MWSt entspricht 134,40 €.

- (2) Die Aussage stimmt nicht; verbale Begründung oder Berechnung: Preissenkung beträgt $30\,\%$.
- 4. a) $A = 332 \text{ m}^2$
 - b) (1) $V = 360 \text{ m}^3$
 - (3) 20 Stunden
 - (4) 13 h 20 min
- 5. a) Koordinatensystem mit Punkt A, B und D
 - b) C(7|5)
 - c) $A = 12 \text{ cm}^2$

a = 4 cm und h = 3 cm

- d) A'(2|-2), B'(6|-2), C'(7|-5) und D'(3|-5)
- e) A'(-42|2), C'(-47|5)

(2) Kosten =
$$90 \in +(x-100)\cdot 0.25 \in$$

$$(3)$$
 90 € + 200·0,25 € = 140 €

b) 725 km

125 € für die gefahrenen Mehrkilometer, dies entspricht 625 km.

c) Kosten bei Benutzung eines Lkws betragen 125,00 €.

Kosten bei Benutzung eines Kleinlastwagens betragen 90 € + 80·0,25 € = 110,00 €. Empfehlung: Kleintransporter (Mietkosten) oder Lkw(Zeit, Benzinkosten, Umwelt).

$$8 \cdot 8 = 64$$
 $\cdot : 2 = 3$

$$48 \cdot 4 = 192$$

b)
$$A = 1$$

$$B = 0$$

$$C = 2$$

c)

L	Ö	W	E	N	В	U	R	G
18	20	2	3	4	7	30	33	36
1,0	1.0	0,5	0,5	1.0	1,0	1.0	0,5	0,5